Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Establishment of Laboratory Test Method for Gelation of Engine Oil Containing Magnesium Detergents

2001-05-07
2001-01-1986
It has been reported that engine oils containing magnesium detergents gel under special conditions. The authors have previously reported on the mechanism by which magnesium detergents form needle crystals, which is the main cause of the gelation[1]. For this article, the authors conducted tests in actual vehicles using several types of engine oils containing magnesium detergents, including oils for which gelation problems have been reported in the market. The gelation was reproduced, and the test oils were ranked by their propensity to gel. In addition, a laboratory test method was used in which water and CO2 were mixed into engine oil under controlled conditions, then left stored in a bottle for twenty days, after which the kinematic viscosity and the quantity of insolubles of the mixture were measured. The study demonstrated the correlation between the laboratory test method and the actual vehicle tests.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

Objective Evaluation Method of On-Center Handling Characteristics

2001-03-05
2001-01-0481
This paper introduces vehicle test method, data processing and result parameters of an objective evaluation method to quantify on-center handling at freeway driving. Vehicle test is conducted on a flat straight road with a low frequency sinusoidal steering angle input. The result consists of eleven parameters that describe relations of two quantities such as gain, non-linearity and lag time.
Technical Paper

Hot Gas Heater System

2003-03-03
2003-01-0737
As a result of recent improvements in engine efficiency, vehicle heating performance has decreased and the demand for auxiliary heat sources is increasing. To help meet this need, we have developed an auxiliary heat system known as the “Hot Gas Heater”. The Hot Gas Heater uses components common to the vehicle air-conditioning system that are not used during winter. However, there are some concerns with this system. In this paper we describe our solutions to these problems. We reduced gas flow noise through multi-stage pressure reduction, and prevented fogging by adding “water retention memory” and “evaporator outlet air temperature control” functions to the system. As a further benefit, we developed a New Accumulator Cycle that moves the cooling cycle accumulator tank to the high-pressure side.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Journal Article

Unsteady Aerodynamic Response of a Vehicle by Natural Wind Generator of a Full-Scale Wind Tunnel

2017-03-28
2017-01-1549
In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
Journal Article

Experimental Investigation of Aeroacoustic Cabin Noise in Unsteady Flow by Means of a New Turbulence Generating Device

2017-03-28
2017-01-1545
With advancement of aeroacoustic wind tunnels and CAE technology, aeroacoustic cabin noise in steady flow has been improved. On the other hand, passenger comfort is also impacted by aeroacoustic noise in unsteady flow. There have been comparatively few studies into this area, and the mechanism remains unclear. Considering the future proliferation of autonomous driving, drivers will pay more attention to cabin noise than previously, and aeroacoustic noise is expected to become more prominent. Thus, the reduction of fluctuating aeroacoustic noise is important. Most of the previous research relied on road tests, which don’t provide reproducible conditions due to changing atmospheric and traffic conditions. To solve these problems, research using devices that generate turbulence are being conducted. However, the fluctuations of flow generated in previous studies were small, failing to simulate on-road conditions sufficiently.
Journal Article

Application Study of Nonlinear Viscoelastic Constitutive Model for Dynamic Behavior of Suspension Arm Bushing

2016-04-05
2016-01-1375
Ride quality is an important purchasing consideration for consumers. It is typically defined in terms of noise, vibration and harshness. These phenomena are a result of vibrations caused at the engine/powertrain and from the road surface, which are transmitted to the passenger cabin. To minimize such vibrations, rubber parts are used extensively at mounting points for the cabin, such as engine mountings and suspension bushings. The vehicle development process increasingly requires performance testing, including rubber parts using CAE, prior to prototype evaluation. This in turn requires a rubber material model that can accurately describe dynamic characteristics of rubber components, particularly frequency and amplitude dependency.
Journal Article

Development of a Parameter Identification Method for MF-Tyre/MF-Swift Applied to Parking and Low Speed Manoeuvres

2016-04-05
2016-01-1645
A vehicle parking manoeuvre is characterized by low or zero speed, small turning radius and large yaw velocity of the steered wheels. To predict the forces and moments generated by a wheel under these conditions, the Pacejka Magic Formula model has been extended to incorporate the effect of spin (turn slip model) in the past years. The extensions have been further developed and incorporated in the MFTyre/MF-Swift 6.2 model. This paper describes the development of a method for the identification of the turn slip parameters. Based on the operating conditions of a typical parking manoeuvre, the dominant parameters of the turn slip model are firstly defined. At an indoor test facility, the response of a tyre under the identified operating conditions is measured. An algorithm is developed to identify the dominant turn slip parameters from the measured responses.
Journal Article

Development of Hardening Depth Evaluation Technique using Eddy Current – Establishment and Introduction of In-line Hardening Depth Inspection System –

2009-04-20
2009-01-0867
A hardening depth evaluation technique using eddy current has been developed, which can be applied to a mass production line for destructive (cutting) inspections. Using this technique, changes in the hardness of the induction-hardened structure can be detected based on the changes in magnetic permeability. This technique reduces the thermal effect and improves measurement accuracy through a multi-frequency exciting method and a difference method algorithm.
Technical Paper

Occupant Kinematics and Estimated Effectiveness of Side Airbags in Pole Side Impacts Using a Human FE Model with Internal Organs

2008-11-03
2008-22-0015
When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models.
Technical Paper

A Study of Anticorrosive Technology in Super Long Life Coolant

2004-03-08
2004-01-0055
The protection of the environment has become a worldwide concern. To reduce the effects of engine coolant on the environment, ways to minimize the amount of coolant released into the environment were investigated. One option is to develop a super long-life coolant. The key issue in developing a long-life engine coolant is selecting an appropriate inhibitor. The inhibitor should be stable over time and completely anticorrosive. In general carboxylic acids are considered to be the class of inhibitors with the highest stability. However, various lab studies have shown the long-term use of monocarboxylic acid could form the foreign substance that causes blockage in radiators. Therefore, the mechanism leading to the formation of foreign substance was determined. A series of carboxylic acids and additives were evaluated. An optimum formulation was then determined, resulting in the development of the Super Long Life Coolant.
Technical Paper

Improvement of PN Filtration Efficiency of Coated GPF – Study of Improvement of PN Filtration Efficiency and Reduction of Pressure Drop

2023-09-29
2023-32-0124
This research aimed to improve the PN filtration efficiency of a catalyst coated gasoline particulate filter (cGPF) to meet the next generation of emissions regulations for internal combustion engines. This paper proposes a concept that improves the PN filtration performance while maintaining low pressure drop by forming a thin PM trap layer on the surface of the cGPF substrate. The design guidelines for the coating particle size and coating amount of the PM trap layer were investigated, and actual manufacturing issues were also identified. The validity of this concept and guidelines was then verified on an actual vehicle.
Technical Paper

Evaluation of Fully Sustainable Low Carbon Gasoline Fuels Meeting Japanese E10 Regular and Premium Octane Specifications

2023-09-29
2023-32-0165
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
X